A System for Automatic Chord Transcription from Audio Using Genre-Specific Hidden Markov Models

نویسنده

  • Kyogu Lee
چکیده

We describe a system for automatic chord transcription from the raw audio using genre-specific hidden Markov models trained on audio-from-symbolic data. In order to avoid enormous amount of human labor required to manually annotate the chord labels for ground-truth, we use symbolic data such as MIDI files to automate the labeling process. In parallel, we synthesize the same symbolic files to provide the models with the sufficient amount of observation feature vectors along with the automatically generated annotations for training. In doing so, we build different models for various musical genres, whose model parameters reveal characteristics specific to their corresponding genre. The experimental results show that the HMMs trained on synthesized data perform very well on real acoustic recordings. It is also shown that when the correct genre is chosen, simpler, genre-specific model yields performance better than or comparable to that of more complex model that is genre-independent. Furthermore, we also demonstrate the potential application of the proposed model to the genre classification task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified System for Chord Transcription and Key Extraction Using Hidden Markov Models

A new approach for acoustic chord transcription and key extraction is presented. We use a novel method of acquiring a large set of labeled training data for automatic key/chord recognition from the raw audio without the enormously laborious process of manual annotation. To this end, we first perform harmonic analysis on symbolic data to extract the key information and the chord labels with prec...

متن کامل

Chord segmentation and recognition using EM-trained hidden markov models

Automatic extraction of content description from commercial audio recordings has a number of important applications, from indexing and retrieval through to novel musicological analyses based on very large corpora of recorded performances. Chord sequences are a description that captures much of the character of a piece in a compact form and using a modest lexicon. Chords also have the attractive...

متن کامل

A Study on Music Genre Recognition and Classification Techniques

Automatic classification of music genre is widely studied topic in music information retrieval (MIR) as it is an efficient method to structure and organize the large numbers of music files available on the Internet. Generally, the genre classification process of music has two main steps: feature extraction and classification. The first step obtains audio signal information, while the second one...

متن کامل

Lyrics-to-audio Alignment and Phrase-level Segmentation Using Incomplete Internet-style Chord Annotations

We propose two novel lyrics-to-audio alignment methods which make use of additional chord information. In the first method we extend an existing hidden Markov model (HMM) for lyrics alignment [1] by adding a chord model based on the chroma features often used in automatic audio chord detection. However, the textual transcriptions found on the Internet usually provide chords only for the first a...

متن کامل

Use of Hidden Markov Models and Factored Language Models for Automatic Chord Recognition

This paper focuses on automatic extraction of acoustic chord sequences from a musical piece. Standard and factored language models are analyzed in terms of applicability to the chord recognition task. Pitch class profile vectors that represent harmonic information are extracted from the given audio signal. The resulting chord sequence is obtained by running a Viterbi decoder on trained hidden M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007